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Abstract. The scaling behaviour of the magnetic hard-square lattice gas is examined in the 
vicinity of the multicritical line located by the recent exact solution. A simple scaling form 
is proposed for the singular part of the free energy and corresponding scaling forms derived 
for the sublattice density difference, the magnetisation and the densities. These are all 
shown to be consistent with the exact results when restricted to the exact solution manifold. 
1-1 the case of the densities this is achieved by proving appropriate elliptic function identities. 

1. Introduction 

The magnetic hard-square lattice gas is a three-state interaction-round-a-face or I R F  

model (Jimbo and Miwa 1985) that generalises and  incorporates the magnetic Ising 
model and  the hard-square (hexagon) lattice gas models. This general model has been 
solved exactly (Pearce 1985) on special two-dimensional manifolds in the full five- 
dimensional thermodynamic space spanned by the activity z, the diagonal (next-nearest- 
neighbour) lattice gas interactions L, M and the diagonal magnetic interactions J ,  K .  
These exact solution manifolds, denoted H (generalised hard hexagon), E (elliptic 
and T (trigonometric), are given by 

H a = p = o  

z = (1 - e -L) ( l  -,-“)/(eLtM - e L - e b f )  

z = ap( 1 -a’)( 1 -pZ)( l  + @ ) / ( a  + p y  

(1.1 

E e L = ( a + p ) / p ( l - a ’ ) ” ’  e M  = ( a + p ) / a ( l - p ’ ) ” ’  

T e L  = (1 - a ’ ) l ’ l / p?  eM =( l -p’ )”? /a ’  
(1.2) 

(1.3) 

where a = tanh J ,  p = tanh K and z = z+ + z- = 22, is the total activity of the particles. 
For simplicity we will assume ferromagnetic interactions so that a, p 3 0. 

The scaling behaviour of the non-magnetic hard-square (hexagon) models, with 
J = K = 0, has been examined by Huse (1983) on the basis of the exact solution (Baxter 
1980, 1981, 1982, Baxter and  Pearce 1982, 1983) on the H manifold. In particular, 
Huse conjectured simple scaling forms for the density functions which were sub- 
sequently confirmed (Pearce and Baxter 1984) on the H manifold using elliptic function 
identities. In this paper I examine the scaling behaviour in the vicinity of the line of 
multicritical points on the E manifold. The T manifold, which exhibits a line of 
essential singularities, will not be considered in this paper. 

2 = 
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2. Scaling and the E manifold 

The two-dimensional E manifold (1.2) is divided into two distinct physical regimes 
El and E11 by a line of multicritical points located by the additional equation 

A E z  (1   CY')(^ -P2)/a/3(1 + a p )  = 1. (2.1) 

Regime E1 (A,= .  1)  is a surface of twofold coexistence between the two paramagnetic 
(42 x J2) square-ordered solid phases in which the particles preferentially occupy one 
of the two sublattices of next-nearest-neighbour sites. Regime E l l  ( A E <  1 )  is a surface 
of fivefold coexistence between the four ferromagnetic (J2 x J2) square-ordered solid 
phases and  the (paramagnetic) fluid phase. 

The E manifold is more naturally parametrised with elliptic parameters U and q 
in place of CY and p. The coordinate transformation relating U and q to CY and p (or 
z ,  1, K ,  L and M ) ,  although complicated (equations (8a, b )  of Pearce (1985)) is analytic 
both within regimes E1 and  EII  and on the multicritical line. The parameter U appears 
in the arguments of the elliptic functions. It lies in the interval O S  U G 77/3 and should 
be regarded as an  ‘anisotropy field’, with U = 77/6 corresponding to isotropic interactions 
( J  = K ,  L = M ) .  The parameter q is the nome of the elliptic functions and  plays the 
role of a temperature-like variable or ‘thermal scaling field’. In E1 q lies in the interval 
-1 < q < 0 and in E11 q lies in the interval 0 < q < 1, q = 0 being the multicritical line. 

The free energy per site can be written as 

f = l n  K = f a n a \ + f s i n g  (2.2) 

where f .ndl  and A,ng are the analytic and singular parts at the multicritical line. The 
known critical exponents (Pearce 1985) for the phase transition are 

where the exponents p, v, p and refer to the interfacial tension, correlation length, 
magnetisation and sublattice density difference, respectively. Since the free energy 
varies analytically on E, even across the multicritical line, the exponent a is not 
properly defined. If, however, we assume the scaling relation 

2 - a = d v  (2.4) 

for the specific heat exponent a, where d = 2 is the lattice dimension, we obtain 

a = -1. ( 2 . 5 )  

These exponents appear to lie in a new universality class. 
Using the above exponents and the functional form of the exact results (Pearce 

1985) on the E manifold, the  full scaling form of the singular part of the free energy 
near the multicritical line is expected to be 

where is the ‘leading thermal non-linear scaling field’, h’ is the ‘magnetic symmetry 
breaking non-linear scaling field’ and k‘ is the ‘sublattice symmetry breaking non-linear 
scaling field’. The ‘anisotropy field’ U is a marginal operator, in renormalisation group 
language, that changes the scaling function but not the critical exponents. In (2.6) it 



The magnetic hard-square lattice gas 449 

is assumed that only one irrelevant scaling field il, with correction to scaling exponent 
;, contributes to the free energy, where il = a is constant and the most likely iden- 
tification of a is the lattice spacing or spatial cutoff. The e+ and 6 functions are 
both analytic for 1q/ < 1 and apply when q 2 0 and  q 0 respectively. On the exact 
solution manifold E, g’ = h = k = 0 and in this case, since the free energy is analytic on 
E (equation (9) in Pearce (1985)), we must have F . ( u ,  x )  = F,(O, O , O ,  U, x )  = 0. 

The scaling forms for the sublattice density difference, magnetisation and densities 
can all be obtained by differentiating (2.6). Differentiating with respect to the sublattice 
symmetry breaking field k gives 

- 

where d ,  is the derivative of PI with respect to its third argument. This is certainly 
consistent with the exact solution (Pearce 1985) 

E1 P I  - P2 = (J8/3)lq11’*0(q) a s ’ )  0’(q3) Q3(  q I2) /  Q7(q6)  
(2.8) 

E11 PI  -P2=:1qI1 “ ( q ) Q ( q ~ ) Q ( q h ) / Q 2 ( q 7  ? ) Q ( q 3 )  
where 

1 

Q(x )=  n ( 1 - x ” )  
I 1  ~ I 

(2.9) 

Evidently, on the exact solution manifold (g’ = h = k = 01, (2.7) can be written as the 
equality 

PI - P ?  = ($) ql’xRI.II( q 1  ? )  

where ( d l / d k )  and RI , , ,  are analytic and, if we make the identification 

the scaling functions are given by 

RI (x 1 = (Js/ 3 ) Q’( xz ) 0’ (x”/ 0’( x‘) 

M x )  = %?(X4)/Q2(X)Q(X2)* 

Similarly, differentiating (2.6) with respect to the magnetic field h gives 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where 6, is the derivative of er with respect to its second argument. Again, this is 
consistent with the exact results (Pearce 1985) 

E1 m = ;( m ,  + m,) = 0 
(2.14) 

and on the exact solution manifold (i  = h = k = 0) we can write the magnetisation as 

(2.15a) 
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with 

I f  we assume that only those scaling fields exhibited in (2.6) contribute, we find 
that the singular part of the density is given by 

(2.16) 

On the E manifold, however, (afsln,/aq) vanishes identically so the scaling form of the 
densities should be 

(2.17) 

where the X and Y functions are analytic. The exact results for the densities on the 
E manifold are (Pearce 1985) 

p\mg = q1’2x(q) YI,l,($ 7 

E11 p:;ld = D(q’  ’) (2.18) 

p;y”d=;(pI+pz) = D(-ql’2)  

where the critical (multicritical) density is pc = D ( 0 )  = :. I t  is not at all obvious from 
these expressions that the singular parts of the densities (2.18) have the required scaling 
form (2.17). 

One definition of the singular part of the density is the difference between its value 
for q > O  and the value obtained by analytically continuing from q < O  around the 
singularity at  q = 0. Alternatively, since the densities (2.18) admit Taylor expansions 
in powers of q112, we can take pslng = f [ p ( q ’ ” )  -p ( -q ’ ” ) ]  to be the odd part of p(q’”) .  
In appendices 1 and 2 we will prove the identities 

( 2 . 1 9 ~ )  D(x )  - D ( - x )  = - txQ(x*)0(x4)Q5(x1?)/Q7(xh) 

D(x) - D(x’) = - ~ x Q (  x’) Q(x4)Q4(x3)Q4( xZ4)/ Q’( x6) Q’( XI’). (2.196) 

From these and (2.18) it follows immediately that 
py:‘d-pp;ol’d= o ( q ” ’ ) - D ( q )  = q”’Q(q)Q(q2)YH,u’d( I I 1  

p;;l ’d-p;ol’d= D ( - p 2 ) -  D ( q )  = q ’ ” 0 ( q ) 0 ( q 2 ) y s p r : l d ( q 3 / 2 )  

(PIL”, = 0 = q”’Q(q)Q(q’) Y;01’d(93’’) (2.20u) 

(p~l”’d)),,n,=~[D(q”2) - D(-q”’)] = q ” * Q ( q ) Q ( q 2 )  YYy’”9’’’) 

( p S y ’ “ ) ) , , , , = ~ [ D ( - q ” ’ )  - D ( q ” 2 ) ]  = q”’Q(q))O(q’) Y7y1“(q”’) 

where 
fluid YI.II ( X I  = - YIOJ’;d(-X) = _ 1 Q 4 ( X ) Q 4 ( X 8 ) / Q ~ ( X Z ) Q ’ ( X 4 )  

YPl”’d(X) = - Y;:”d(-X) = -:@(X4)/Q’(x7. 

Y ; ” ” d (  x) = 0 (2.20b) 
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These results verify the simple scaling form (2.17) in detail and for both definitions 
of psing with 

X ( q )  = Q ( s ) Q ( q 2 ) .  (2.21) 

Before proceeding to prove the two identities (2.19), we observe that the correlation 
length should scale with the same variables as the free energy so, since v = <, we expect 

(2.22) 

Again this is consistent with the exact results, with in fact no dependence on U, and 
may be written as the equality 

(2.23) 
Actually, there are two correlation lengths (,,, and ((, corresponding to the decay of 
magnetisation-magnetisation correlations and density-density correlations respec- 
tively. The exact results (Pearce 1985) are 

( - 1  = 14i3/2- z ,  ( 1  q 13'2). 

where 
1- 

k ' ( x )  = JJ [ ( l  - X + ' ) / ( l + x ' " - ' ) ] 4  
n = I  

(2.24) 

(2.25) 

Appendix 1.  The first identity 

The identities (2.19) were first obtained by computer calculations as in Pearce and 
Baxter (1984). To prove these identities analytically we will need the elliptic functions 
( l 4 /<1 )  

x 

f( w, q )  = n (1 - q " - l w ) (  1 - q""- ' ) (  1 - 4 " )  
n = l  

Using the simple identities 

we see that 

( A l . l )  

(A1.2) 

(A1.3) 

(A1.4) 
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and hence the first identity in  (2.19) becomes 

x[e,(o, X)e,(o, x')- e 4 ( 4 2 ,  ~ ~ 7 ~ 1 2 ,  x')]. (A1.5) 

But now let z = e x p ( 2 r i / 4 )  be a fourth root of unity. Then, using the fact that 
O,(r/4, x )  = 0,(37r/4, x)  and the series representation (A1.2), we obtain 

84(0, x)O,(O, x3)  - e,( ~ / 2 ,  x)O4(v/2, x ~ )  

= zre4(7Tr/4, x)e4(m/4,  x') 

= f (-i)m+nXm2+3n2 exp[(m + n + 1)2rrir/41 

r = O  

r = O  m,n=--oo 

x 
1 2 k ' - X n k + 4 n 2 + ? n - 8 A + 1  = - 4  c x 

n,k = - x 

1 
= -4 X12h'+41'-hA+21+l 

h . I = - x  

= -4xf( -x?, x"f( -x6, x24). 

(A1.6) 

Here the sum on m has been restricted to the values m = 4k - n - 1 because of the 
relation 

3 p = O ( m o d 4 )  
p # 0 (mod 4)' r = O  

(A1.7) 

Next, the double series was factored by transforming from n to 1 = n - k. Finally, 
putting (A1.6) into (A1.5) and using the simple identities (A1.3) and 

(A1.8) f (  -x, x4) = Q'(x') /Q(x) 

we obtain 

= -~xQ(x')Q(x4)Q5(x12)/Q'(x6) 

which is ( 2 . 1 9 ~ ) .  

Appendix 2. The second identity 

To prove the second identity (2.19b) we will first prove the auxiliary identity 

Starting with (A1.4) and using the identity e,(O, x )  = e , ( r /4 ,  XI',) we find 

e,(o, ~ ' ) e , ( ~ / 4 ,  - e,(7T/2, x')B,(o, xh) 3 D ( x )  - 1 = 
64(77/2, X')&dO, x6) 

(Al .9)  

(A2.1) 

(A2.2) 
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From (A1.3) the denominator here is 

e,(n/2, x3)e4(o, x6) =.f(-x', x6)f(x6, x") 

as in (A2.1). It therefore remains to show that the numerator in (A2.2) is given by 

e4(0, x')e4(n/4, XI") - e,( ~ / 2 ,  x')e,(o, x') = -2xf(-x, x6)f(xz, XI?). 

This identity follows immediately from two further identities: 

(A2.3) 

(A2.4) 

e4(o, ~ ' ) e , ( 3 ~ / 1 2 ,  x i  ' ) + e 4 ( ~ / 3 ,  x2)e, (7~/ i2 ,  X I  4 ) + e 4 ( 2 ~ / 3 ,  x2)e4(11n/12, X I  ") 

e4(o, X2)8,(3n/12,x' 4 ) - te4cn/3 ,~ ' )e4(7~/12 ,  ~ ' "+) - ;e , (2~/3,  ~ ~ ) 0 , ( 1 1 ~ / 1 2 ,  X I  

=384( T/2, X')64(0, X6) ( A 2 . 5 ~ )  

= -3Xf(-X, x"f(x', XI'). (A2.5b) 

The two identities (A2.5) can be proved analogously to (A1.6). Let z = exp(2xi /6)  
be a sixth root of unity so that 

p = 0 (mod 6 )  
p # 0 (mod 6)' 

5 

r=O 
(A2.6) 

Then the identities (A2.5) are obtained by manipulating a double series representation 
as follows: 

6-' 1 ~'~~O,(nr/3, x2)04(n/4+ nr /6 ,  x1  ') 
5 

r = O  

5 J c  
-1 1 1 (-l)m+nX2m'+n'/4 e n 7 7 ~ / 2  (2m+n+2p)r 
- 6  z 

r = O  m,n=-= 

(A2.7) 

= ( - l )PxP?f ( -xA- 'P ,  x6)f(x6-4P, 

Here the sum on n has been restricted to the values n = 6 k  - 2m - 2p using (A2.6) and 
the resulting double series was factored by transforming from m to I = m - k. The 
particular identities ( A 2 . 5 ~ )  and (A2.5b) are obtained by choosing p = 0 and p = 1, 
respectively, in (A2.7), and using the simple facts that 

(A2.8) 

(A2.9) 

This concludes the proof of (A2.1), which using the simple identity 

f ( -w> ,  s ) / f ( s ,  9 ' )  = f ( w ' ,  4 ' ) l f ( Y  9 )  (A2.10) 

can now be written as 

f(X3, X6)f2(X?, X I 2 )  

f ( x ,  Xh) f"x6, x") 
~ D ( x )  - 1 = - 2 ~ -  

f2(x', x'2)f'(x-', X I ' )  

f(x, x")f(x', X")f?(X6, XI?)' 
= -2x (A2.11) 
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Using this last form for D ( x ) ,  the identity (2.196) to be proved becomes 

(A2.12) 

Using (A2.10) this finally simplifies to 

f( -x, x”)f( -x5, XI2)f2( -x6, XI2)  - xf2( -x2, X‘2)fZ( -x3, x12) 

Q4(x3)Q4(x24) f(X2, x24)f(x10, x24)j+(x12, x24) 

Q’(X6)Q5(X12) f2(x2, X”)f2(X3, x12) 
= Q(x2)Q(x4) 

=f2(x4, X’2)f’(X3, X I?) .  (A2.13) 

But this is just a special case (a  = x4, 6 = -x6, c = -x’, d = 1, q = x”) of the very 
general identity 

f (  ac l f (  a / c ) f (  I f (  b/  d ) - (b /  c ) f (  ab I f (  a /  6 I f (  cd I f (  c /  d 1 = f (  ad I f (  a / d ) f (  bc ) f (  b/  c )  
(A2.14) 

where a, 6, c, d are complex and f ( w )  =f(w, 9 ) .  To prove this general identity let 
F ( a )  be the ratio of the L H S  of (A2.14) over the RHS. Then F ( a )  = F ( q a )  is analytic 
throughout a period annulus and hence is constant by Liouville’s theorem. Setting 
a = c verifies that the constant is unity. This completes the proof of the second scaling 
identity (2.196). 
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